S

1> Si-6/

“Automated Support for Experience-Based Software Management /7)
Jon D. Valett N 9 ﬂ = ‘! g ﬁ
NASA/Goddard Space Flight Center

Software Engineering Branch Code 552
Greenbelt, MD 20771
internet jvalen@gsfcmail.nasa.gov
phone: (301) 286-6564
FAX: (301) 286-9183

Abstract

To effectively manage a software development project, the software manager must have ac-
cess to key information concerning a project’s status. This information includes not only data
relating to the project of interest, but also, the experience of past development efforts within the
environment. This paper describes the concepts and functionality of a software management tool
designed to provide this information. This tool, called the Software Management Environment
(SME), enables the software manager to compare an ongoing development effort with previous -
efforts and with models of the “typical” project within the environment, to predict future project
status, to analyze a project’s strengths and weaknesses, and to assess the project’s quality. In
order to provide these functions the tool utilizes a vast corporate memory that includes a data
base of software metrics, a set of models and relationships that describe the software develop-
ment environment, and a set of rules that capture other knowledge and experience of software
managers within the environment. Integrating these major concepts into one software manage-
ment tool, the SME is a model of the type of management tool needed for all software develop-

ment organizations.

Keywords: software management, measurement, reuse of experience, management tools

1.0 Background

Good software management is generally viewed as a critical ingredient in successful soft-
ware projects. One key aspect of good management is having access to the data that are neces-
sary to understand the strengths and weaknesses of an ongoing development effort. To provide
such access, a myriad of management-oriented tools have been developed. These tools typically
allow the software manager to perform cost and size estimation, to plan a development project,
to set up work-breakdown structures, and to provide other planning needs. Such tools are cer-
tainly useful, yet they do not provide the full scope of functionality required for a manager to ef-
fectively evaluate a software project.

Ideally, an experience-based software management tool would enable a manager to observe

311
10006788L

a project’s progress, to compare that progress with other projects or with a model of how a
project “normally” behaves, to predict key project parameters such as size, completion date, or
errors, to assess the project’s progress pointing out its strengths and weaknesses, and to analyze
the quality of the software project and the software product. In order to provide this
functionality, the tool would require access to key data relating to a project's status and to the
past experience necessary to understand and manage the ongoing project. Included in this
knowledge and experience is a data base of software metrics, a set of models of a development
environment, a set of management rules that provide insight into a project’s strengths and weak-
nesses, a set of quality definitions, and a set of relationships that help to define an environment’s
characteristics. Such a management tool would integrate this experience into a single environ-
ment providing the functionality required to actively monitor a software project.

A working model of the management tool described above is being developed within the
Software Engineering Laboratory (SEL) at NASA's Goddard Space Flight Center (GSFC). This
tool, called the Software Management Environment (SME) uses software measurement and the
experience acquired frém software measurement as its basis. Other tools either are being or have
been developed that utilize measurement as a major component. These tools include TAME (1],
Amadeus(2), and GINGER{3). SME is a unique experience-based tool because it focuses on
utilizing the measurement and the experience of a measurement program to automate support for
project managers in actually monitoring the progress of their projects. While the SME has been
constructed for a specific development environment, the concepts, architecture, and functionality
of the tool, which are described in this paper, are general enough for any organization to build a
similar tool. This paper will discuss the management activities that the SME addresses, the
components needed to build an SME, and how these components are integrated to provide the

management functions described.

3412
10005788L

2.0 Management Activities

In order for the SME to be an effective tool, it must automate key management functions.
While the current SME is not comprehensive in its coverage of all management functions, it does
provide support for many important aspects of software management. The SME utilizes a
measurement-based approach to software management. Within this approach reusing
management experience is viewed as an important aspect of the management process. This

experience-based approach to management includes the following activities:

Observation and Comparison: The manager monitors the progress of a project by examining
key project measures such as effort, size, and errors. The manager compares the status of the
current project with past projects and with models of these measures that represent the nominal
case within the environment. By observing and comparing, the manager is able to determine the
current project’s status and the differences between the current project and the normal project

within the environment.

Prediction and Estimation: The manager estimates key project parameters such as project cost
and size. The manager also, uses various models and relationships to continually update these
predictions. These activities allow the manager to determine at-completion values for important

measures and to estimate project schedule.

Analysis: Based on the measurement data, past project experience, and subjective information

about a project, the manager identifies potential project problems.

Assessment. Using available measurement data and definitions of project quality, the manager
assesscS the overall quality of the ongoing project. For example, these quality assessments
provide the manager with an idea of the project’s maintainability, correctability, and stability.

3413
10005788L

A software tool should only attempt to avtomate aspects of a process that are understood
well enough to perform manually; in the case of SME, all of the activities described above are
carried out on projects within this development environment. In fact, such activities are part of
the normal management process. The SME integrates data and experience into one tool that

provides managers with functions that help them to perform these activities.

3.0 The Software Management Environment (SME)

The Software Engineering Laboratory (SEL) has actively been developing the management
concepts that are the basis for the SME for the past 15 years. A prototype of the tcol was devel-
ojec. between 1984 and 1987, this prototype provided a set of recommendations ror developing
an actual version of the tool.[41 This set of recommendations was then incorporated into ihe ac-
-ual development of the SME, which began in 1987. The remainder of this section will discuss

she SEL and the concepts that are the underlying ideas for the SME.
3.1 The Software Engineering Laboratory

The SEL was established in 1976 and has three primary organizational members:
NASA/GSFEC, Software Engineering Branch; The University of Maryland, Computer Science
Department; and The Computer Sciences Corporation, Software Engineering Operation. The
goals of the SEL are (1) to understand the software development process in the GSFC environ-
ment; (2) to measure the effzcts of various methodologies, tools, and models on this process; and
(3) to identify and then 10 apply successful development practices.(5] During the SEL’s 15 years
it has collected data on over 100 software development projects. These data include such items
as software development effort, software size, er-or data, change data, and computer utilization
data and are stored in a large repository called the SEL data base.[6] This data base has been

3-14
10005788L

used throughout the past 15 years to help the SEL to accomplish its three objectives. In the pro-
cess of studying and measuring this particular development environment the SEL has produced
numerous reports and papers which characterize this environment, evaluate various tools and
methods, and capture experience and lessons learned in various software development efforts.
(For a complete list of SEL documents and reports see the " Annotated Bibliography of Software
Engineering Literature”.[7])

Throughout the SEL’s history, this software measurement program has been used extensive-
ly in the management of actual software projects. Such use of measurement data is common
among companies that have instituted measurement programs (eg. reference [8]). As this use of
measurement as a management tool evolved, the SEL began attempts to automate the process.
Such automation is only possible through a comprehensive understanding of how to use software
measurement data within a particular development environment. Within the SEL environment,
software managers use not only the data collected on their current project, but also, the
information and experience from past projects. The studies and reports characterizing the
environment provide the manager with profiles of how particular measures behave, numerous
relationships for estimation and prediction of such measures, and lessons leamned concerning

how to analyze measurement data. Automating the access to this vast corporate resource is the

goal of the SME.

3.2 SME Concepts

Understanding the SME requires a firm understanding of the three major components that
are the basis for the tool. The first is the SEL data base, it provides the historical data of past
projects, as well as the dynamic data on projects that are currently being managed. The second,
is a set of models and relationships that describe the development environment. These models
and relationships provide the profile of a normal project, as well as the necessary information to

predict and estimate key project parameters. Finally, experienced software managers analyze

3-15
10005786L

measurement data to determine a project's strengths and weaknesses. The knowledge required to
perform this analysis is captured in management rules that provide the expert analysis portion of
the SME. These three SME concepts provide the experience base needed for an organization to
construct an SME-like tool.

An important aspect of these SME concepts is that the experience they represent continually
evolves as the development environment and process changes. The SME packages the current
level of experience; as it changes, the experience base is refined to reflect these changes. The
representation of the experience, however, does not change. Therefore, the key aspect of the
SME, from the perspective of someone who wishes to build a similar tool, is the concepts and

the architecture of those concepts, not the experience itself.

w sur

Measurement of the software development process and its products is a necessary compo-
nent of successful software management. Within the SME, data from the SEL data base is uti-
lized to provide the underlying measurement.data. The SEL data base captures information on
all software projects within one particular development environment. This data includes such
items as the weekly effort expended on a project, the size of the ongoing software project (in
both lines of code and number of modules), the amount of computer utilization on a project, and
the number of errors uncovered as well as the number of changes made to the source code. In
addition to these basic measures, the SEL data base contains data on such items as number of
modules designed, number of open problem reports, and the amount of time spent uncovering
and repairing errors. While these lists of data are not complete, they do provide a snapshot of the
types of data available to the SME.

The SME uses the data from the SEL data base as a basis for all of its analysis, comparison,
prediction and assessment. The data provide the information that characterize and describe the
current software development project as well as past projects of interest. Having access to SO

much descriptive data allows the SME to provide its wide range of functionality. Thus, software

3-16
10005788L

measurement is the backbone of the SME. Measurement provides the basis for all other SME

concepts; neither the management rules nor the models and relationships would be possible

without it.

Models and Relationshi

The second compbncnt of the SME is the models and relationships that represent the soft-
ware development process and its products. The models and relationships used within the SME
and presented within this paper are derived from numerous previous SEL reports and studies. A
summary of the types of models and relationships used can be found in the document "The
Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules".[9]

The term model is used to describe a pattern of how some measure or combination of
measures normally behaves within a software development environment. Measurement models
have been described in numerous SEL reports and papers, but they have generally all been
developed using similar methods. Typically, a model for some particular measure is developed
by examining the data for that measure over a set of similar projects. The data is then combined,
usually using some type of averaging, to develop a model of the “normal” project. Since even
within one environment all projects may not be homogeneous, different models for the same
measure are developed for significantly different project types. Within the SME, there are
currently two different model types, depending on the development methodology used on the
projects. Other models may need to be developed depending on such parameters as project type,
programming language, or development environment. Deciding what different factors constitute
a distinct model type is an important research component of developing an SME. Certainly, each
individual project is distinct, but usually projects within a development environment have many
similarities that result in reasonable models.

As an example of a model that is used by SME, Figure 1 shows how source code grows
within the SEL environment. (For the purposes of this paper, there is no need to distinguish

between various model types.) It provides a representation of the typical growth of the number

3-17
10005788L

of source lines of code within a project’s controlled library. The wide band indicates a range of
what is considered to be “normal” source code growth. (In this case the range is one standard
deviation on either side of the actual model.) As another example, figure 2 is the model of error
rate for the SEL environment. This model shows the typical errors uncovered and repaired per
line of code within the environment throughout a project’s lifetime. Again, the band represents a
range over which the error rate is considered “normal.” (In both Figures 1 and 2, lines of code is
defined as physical lines including commentary and blank lines. In Figure 2, error is defined as a
conceptual error in the software.) ~Another kind of model used within the SME is of the amount
of time spent in each phase of a project. This model is depicted in Figure 3; it provides a mecha-
nism for determining how much calendar time a project normally spends in each phase of the
software development life cycle.

Relationships, on the other hand, provide the SME with a way to estimate critical project
factors based on other estimates, or current status. Relationships are typically developed by
using numerous software development projects' data to determine if any correlation exists
between various measures. Normally, such data analysis is done to test hypotheses that certain
relationships exist between such measures.

As an example, within the SEL environment, a relationship has been found between lines of
code and the actual duration of a project. This relationship is shown as the equation:

D =5.450 * L ** 0.203
where,

D is the duration of the project in months (from project start through acceptance test), and

L is the total delivered lines of code in thousands.

Such a relationship allows a manager to estimate the length of a project based on an estimate of
the number of lines of code for that project. Other relationships have been established between
computer use and lines of code, effort and number of modules, etc. Such relationships provide a

software manager both a mechanism for estimating various parameters and a consistency check

for sets of estimates.

3-18
100057881

% of Total LOC

100. |—-

75. -

50. j—----

100.0%

25 . p=--

Schedule

Figure 1: Model of Source Code Growth

Errors/LOC

DESGN

0.0020 [—-----

0.0015 [—-----

0.0010 —----scce--

0.0005 —---

10005788L

Schedule

Figure 2: Model of Errors/Line of Code

3-19

0.0020

Management Rules
Capturing how experienced software managers usc and evaluate measurement data has been
investigated by the SEL.{10] These studies show that using expert systems techniques for the
capture and use of this experience is feasible in this domain. This knowledge about software
measurement has been published in numerous SEL reports and it provides a foundation for creat-
ing an experience base for utilizing software measures in management.[9] The concept of these
software management rules is that interviewing software managers and capturing how they inter-
pret certain conditions of a project provides reusable knowledge concerning the strengths and
weaknesses of a project. These interpretations are then combined into specific management rules
that describe the possible explanations for certain conditions. For example, figure 4 shows a
graphic of a simple management rule. This figure shows how one might interpret a deviation
from the normal pattern of computer use per line of source code (again represented as a model
similar to those described in the previous section). For example, early in the project if the num-
ber of CPU hours per line of code is above normal one possible interpretation is that the design
was not actually complete. Later in a project, if the measure is below normal, the possible expla-
nations might be either low productivity, or insufficient testing. Such a figure provides a simple
representation of a management rule.
Actually, a number of simple management rules can be combined to form rules that describe
the possibilitics that certain explanations are true. Fdr example, a rule such as
If the number of programmer hours per software change is above normal and
the project is early in the code phase then possible explanations are
Good solid, reliable code (0.5)
Poor testing (0.25)
Changes are hard to isolate (0.25)
Changes are difficult to make (0.25).

describes the possible explanations for a certain condition. This rule uses numbers to show the

3-20
10005788L

Design Code System Test Acceptance Test
35% 30% 20% 15%

Figure 3: Model of Project Schedule

CPU Hours/LOC

DESGN COOET SYSTE ACCTE

0.0010 p—cccceereccocnce

Integration
Crunch

Insufficient

0.0008
Design

0.0008

0.0005 |~ oo B

0.0003 Low Productivity |

1
| Insufficient Testing |
1 i

Schedule

Figure 4: Rule for Analyzing Computer Use

321
10005788L

certainty that each of the possible consequents are true. Thus, it is more likely that good solid,
reliable code is the explanation for the deviation then poor testing, although either explanation
could be true. This rule is then combined with other rules for other measure deviations to in-
crease the écrtainty that particular explanations are correct. Using this method of evaluating
software measures provides a set of possible explanations describing a project’s strengths and
weaknesses. By using sets of rules in this manner, an automated system can examine the

empirical evidence about a project and provide some insight into the project’s status.

4.0 Using the SME

This section describes how the SME utilizes the concepts described above to provide its
functionality. While the concepts of the SME are the most important aspect of the tool,
understanding how to utilize those concepts 10 provide management support is also of interest.
Attempting to build an SME-like tool requires knowledge of how to integrate the experience into
a useful tool. The examples used are realistic in that they show the actual functionality of the
SME, however, due to the inability to reproduce the color SME images, the graphics images are

in black and white.

Comparison

One major function of the SME is the ability to observe data and compare it to models and
previous development efforts. Figure 5, shows an example of using the SME to compare data to
a model. In this example the manager is looking at the way error rate behaves on the project of
interest. The current project is shown as the solid line and the model is shown as a band of what
is considered “normal” for error rate. The x-axis shows the expected schedule for the project.
That is, the start date and end date shown are the manager’s estimates, however, the other phase

dates shown are the expected phase dates for the project (as calculated by the SME). The tool

3-22
10005788L

Errors/LOC

03 09 os 09 02
ger's
11 09 os 15 09 ""“s o
89 89 y Scbe
9 h 4 4
DESGN
0.0020 |—---- 0.0020
0.0015 |—---
0.0010 |—--eere-
0.0009
0.0005 |—----
o3 10 05 09 0z SME
11 21 12 15 09 Model
89 89 90 90 91 Sch

Figure 5: Rate

10005788L

of ’Reported Errors/Lines of Code’

3-23

for Project A

also shows the manager’s estimates for all the phase dates on the top of the screen. The Y-axis
shows the error rate in errors per line of source code in the controlled library. Note that the phas-
es represent a typical waterfall life cycle, with the major phases being design, code and unit test,
system test, and acceptance test. By using this comparison, the manager is able to track such key
items as error rate, productivity, and amount of computer time used. Additionally, the manager

is able to overlay other projects’ error rate patters in order to compare the behavior of those

projects to the current project.

Predicti
Figure 6, provides a look at another function of the SME. This figure is similar to the com-
parison figure, except that it also shows a predicted final value for the measure. In this figure,
the measure of interest is computer use (in number of CPU hours). This is shown in absolute
terms on the Y-axis. That is, the actual amount of time used on the machine is shown (it is not
normalized). The SME allows the user to predict where the project will be when it is completed.
This function utilizes the model and a projection of the progress of the project based on the mea-
sures in SME (eg. the project is 50% of the way through the code and test phase), to predict the
final values of the measure, and of the schedule. In this example, the number of CPU hours on
the project is predicted to be 1255, while the current estimate is 990 hours. Also, the project is
predicted to take longer then the manager has estimated. Such predictions enable the software

manager to gain another perspective on the final values of project measures and on the projected

end date of the project.

Analysis
A key component of the SME is the utilization of expert systems technology for software
management. Through experience, software managers are able to improve their ability to ana-

lyze software measurement data. Based on the measurement data and their experience, managers

are able to identify the strengths and the weaknesses of a project. The SME utilizes a rule base

3-24

10005788L

that captures managers’ knowledge of how to perform such analysis. This rule base is then used
to analyze deviations from the normal project. An example of such analysis is found in figure 7.
In this figure, the error rate of the current project is lower then normal for this particular point in
the development life cycle. The SME uses this information, information about other measures,
and subjective data about the project to provide possible reasons for such a deviation. The top
two explanations are then displayed for the user. In this case, the explanations are that insuffi-
cient testing is being performed and that an experienced development team is producing a superi-
or project. Either of these two explanations might be correct, they only provide insight to the
user as to possible explanations for the deviations. Other explanations are certainly possible; the
user of the tool can obtain further data on why the system reached its conclusions and on the
other conclusions. The user can also provide the system with more subjective information about

the project of interest, perhaps leading to changes in the conclusions that are inferred.

Assessment

A final function of the SME is to utilize software measures to provide an assessment of the
overall quality of a software project. An example of such an assessment is shown in figure 8. In
this figure the bar graph shows the SME’s rating of certain quality measures as they compare to
the normal project in the environment at that point in its development. The quality factors shown
are maintainability, reliability, and stability. Each of these factors can be determined by combin-
ing various software measurement data. For examplc; the quality factor of maintainability is cal-
culated by adding the percentage of errors that are easy to isolate with the percentage of errors
that are easy to correct. Thus, as these percentages increase the maintainability of the project is
said to increase. For each quality factor displayed, SME has a specific definition for how to
compute that factor. These definitions, which are really a form of a relationship, use a specific
set of measures to compute the relative value of that quality indicator. Of course, SME also uses
a model of how these factors behave over time in order to display the normal band on the graph.

Quality assessment provides the software manager with an overall appraisal of how the project of

3-25

10005788L

03 09 os 09 o2 '
11 09 os 15 09 “"s ch‘“g;‘ s
89 89 90 90 91 e
v A 4 hd b 4 w
1250 DEIGYH COREX. SYSIE acelE..... 1258
1000 wee 990
B 750 -
3
o
D 500 ———
8
250 fereeommiesmennmeenctcnneeenananfeess
03 11 06 10 03 SHME
11 Da o9 20 30 Predicted
89 89 %0 90 91 Sch
Figure 6: Predicted Growth in °CPU Hours’ for Project A
03 09 (1} 09 oz ‘e
11 09 05 15 09 ager
89 89 20 90 gy Schedule
w w h 4 -w h 4
DESGN CODET SYSTE ACCTE
0.0020 [—-------1 Reascns for Error Rate [~ 40.0020
below normal:
§ 0.0015 |—-------1 1. Insufficient Testing
S 2. Experienced Development Team
N
§ o0.0010f{—------ -
H
H 0.0009
0. D005 beeveeeerrermersernrnsesesceecensesnaefenseennasesed i e s st seneerasnane e ne s anea s —_
03 10 05 09 02 SHME
11 21 12 15 09 Model
89 89 90 90 91 Sch

Figure 7: Analysis of *Reported Errors/Lines of Code’ for Project A

10005788L

3-26

10005788L

Figure 8: Overall Assessment Function

3-27

interest is doing compared to the normal quality measures in the environment.

5.0 SME as a Model Tool

Currently, the SME is being used by numerous software managers in the SEL software
development environment to assist them in monitoring actual software projects. The SEL, as an
experience factory [5], has provided the concepts necessary to build an SME for this particular
software development domain. Other organizations can develop an SME-like tool by beginning
to capture the experience of their environment. While within the SEL environment all three of
the major components of SME have been well developed, other organizations may have only
limited parts of the components. Such limitations should not be viewed as detrimental to the
development of an SME. Similar tools should be developed using the experience available; they
can then evolve into more complete tools as the local experience base provides additional
artifacts for reuse.

The SME is an attempt to integrate a measurement process, the results of a longstanding
software engineering research effort, and the expertise of software managers into a tool for man-
aging and controlling software projects. As such, it provides for the utilization of corporate
experience to manage ongoing software projects. An SME has been built for one particular soft-
ware development organization. Other software development organizations should use the
SME's concepts as a model for building similar tools for their environment. By providing the
user with increased project awareness, predictions of key project parameters, expert analysis of
software measures, and assessment of the overall quality of the development effort, an SME is
extremely valuable to a software manager. Such a tool provides improved project management

through the packaging of experience.

3-28
10005788L

1]

[2]

[3]

[4]

[5]

(6]

[7}

(8]

[9]

[10]

References

—Bas-ili, V. R. and H. D. Rombach, "The TAME Project: Toward Improvement-Oriented

Software Environments," IEEE Transactions on Software Engineering, June 1988, pp.

758-773.

Selby, R. W, et al., "Metric-Driven Analysis and Feedback Systems for Enabling

Empirically Guided Software Development,” Proceedings of the 13th International

Conference on Software Engineering, IEEE Computer Society Press, May 1991, pp. 288-

298.

Kusumoto, S., et al., "GINGER: Data Collection and Analysis System," Technical

Report, Osaka University, Osaka, Japan, June 1990,

Valett, J., “The Dynamic Management Information Tool (Dynamite): Analysis of Proto-
e, Requirements, and Operational Scenarios,” Master’s Thesis, University of Mary-

land, May 1987.

Basili, V.R., et al. "The Software Engineering Laboratory - An Operational Software

Experience Factory," Proceedings of the 14th International Conference on Software

Engineering, IEEE Computer Society Press, May 1992.

So, M. et al., “SEL Data Base Organization and User’s Guide (Revision 1),” SEL-89-

101, The Software Engineering Laboratory, NASA Goddard Space Flight Center, Green-

belt, Maryland, February 1990. '

Morusiewicz, L. and J. Valett, “Annotated Bibliography of Software Engineering Labora-

tory Literature,” SEL-82-1006, The Software Engineering Laboratory, NASA Goddard

Space Flight Center, Greenbelt, Maryland, November 1991.

Grady, R., “Work Product Analysis: The Philosopher’s Stone of Software?,” IEEE Soft-

ware, March 1990, pp. 26-34.

Decker, W., R. Hendrick, and J. Valett, “The Software Engineering Laboratory (SEL)

Relationships, Models, and Management Rules,” SEL-91-001, The Software Engineer-

ing Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, February

1991.

Ramsey, C. and V. R. Basili, “An Evaluation of Expert Systems for Software Engineer-

ing Management,” IEEE Transactions on Sofiware Engineering, June 1989, pp. 747-759.

3-29

10005788L

